Nonrandomness of the 33-round MD6

Dmitry Khovratovich

University of Luxembourg

FSE 2009

D. Khovratovich Nonrandomness of 33-round MD6

Differentiability from the random oracle

Fix n bits of input and n bits of output.

To find a solution for a random oracle one needs 2ⁿ trials;
For some compression functions we can generate solutions with cost 1.

- *H*: 89 words \rightarrow 16 words.
- Write down bit equations for the compression function:
 - Nonlinear: x^j_{i-89} + x^j_{i-31}x^j_{i-67} + x^j_{i-18}x^j_{i-21} + x^j_{i-17} + x^j_i = 0.
 2× Linear: y^j_i = x^j_i + x^{j+l_i}_i.
- $1664 \times 3 \times 64 \approx 300000$ equations for MD6-256.
- Set some variables to constants.
- Solve a system with a Gaussian-like process.
- Generate many solutions.

We fix several bits in the input and the output of the compression function — and show how to derive the others.

Rounds	Fixed bits		Speed	
	input	output	32-bit	64-bit
18	Aumasson et al.		11	5
22	> 9	> 9	14	6
26	6	6	17	7
30	2	2	20	8
32	2	2	21	9
33	1	1	22	9
80	MD6-160		52	22
96	MD6-224		63	26
104	MD6-256		68	28

