New Generic Attacks which are Faster than Exhaustive Search

Christophe De Cannière, Itai Dinur, and Adi Shamir

Katholieke Universiteit Leuven Weizmann Institute of Science Ecole Normale Supérieure

February 24, 2009

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

Every *n*-bit block cipher c = E(k, p) can be broken in 2^n operations by exhaustive search.

Question: Can we do (slightly) better?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Let us try to use Cube Attacks

Classical Cube Attack

 $E: (\mathbf{k}, \mathbf{v}) \mapsto c$

- Attacker controls public value v (chosen plaintext)
- **Goal:** recover secret key k
- Attack exploits non-randomness of E
- Will not work if E(k, v) is random function of degree $2 \cdot n$

k, v, p, and c are all n-bit words

Let us try to use Cube Attacks

How about related keys?

 $E: (\mathbf{k} \oplus \mathbf{v}, \mathbf{0}) \mapsto c$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Attacker controls public value v (related key)
Goal: recover secret key k

k, v, p, and c are all n-bit words

Observation

■ Main observation: k_i and v_i never appear together in the same monomial of E(k ⊕ v, 0)

$$E(k \oplus v, 0) = \cdots + v_1 v_3 v_4 v_6 (k_2 + k_8 k_5 k_7 + k_2 k_7 k_8) + \cdots$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Observation

Main observation: k_i and v_i never appear together in the same monomial of $E(k \oplus v, 0)$

$$E(k \oplus v, 0) = \cdots + v_1 v_3 v_4 v_6 (k_2 + k_8 k_5 k_7 + k_2 k_7 k_8) + \cdots$$

⇒ Summing over the cube $v_1v_3v_4v_6$ eliminates k_1 , k_3 , k_4 , and k_6 from the corresponding superpoly.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Observation

Main observation: k_i and v_i never appear together in the same monomial of $E(k \oplus v, 0)$

 $E(k \oplus v, 0) = \cdots + v_1 v_3 v_4 v_6 (k_2 + k_8 k_5 k_7 + k_2 k_7 k_8) + \cdots$

- ⇒ Summing over the cube $v_1v_3v_4v_6$ eliminates k_1 , k_3 , k_4 , and k_6 from the corresponding superpoly.
- ⇒ Generic attack: works even when $E(k \oplus v, 0)$ has degree *n* (highest possible degree)

Attacking $E(k \oplus v, p)$

Precomputation

- Fix plaintext p (e.g., p = 0)
- Sum over cube $v_{m+1}v_{m+2}\cdots v_n$ and obtain superpoly $g_i(k_1, k_2 \cdots k_m)$ for each of the *n* ciphertext bits c_i

 $v_1v_2\cdots v_mv_{m+1}\cdots v_{n-2}v_{n-1}v_n$ $k_1k_2\cdots k_mk_{m+1}\cdots k_{n-2}k_{n-1}k_n$

Cost: 2ⁿ function evaluations

Attacking $E(k \oplus v, p)$

Precomputation

System of *n* nonlinear equations in *m* variables

Attacking $E(k \oplus v, p)$

Precomputation

■ *m* linear expressions in *n* variables

If $m = \log n \Rightarrow$ linearize and solve

Store these log *n* vectors of *n* bits in memory

Attacking $E(k \oplus v, p)$

Online Phase

• Compute $g_1 \cdots g_n$ by summing the ciphertexts over the cube $v_{m+1}v_{m+2} \cdots v_n$

- Recover $k_1, k_2 \cdots k_m$ using precomputed vectors
- Exhaustively search for remaining n m key bits

Cost:
$$2^{n-m} + 2^{n-m} = \frac{2}{n}2^n$$
 function evaluations

Attacking $E(k \oplus v, p)$

Online Phase

- Compute $g_1 \cdots g_n$ by summing the ciphertexts over the cube $v_{m+1}v_{m+2} \cdots v_n$
- Recover $k_1, k_2 \cdots k_m$ using precomputed vectors
- Exhaustively search for remaining n m key bits

Cost:
$$2^{n-m} + 2^{n-m} = \frac{2}{n}2^n$$
 function evaluations

 \Rightarrow What did we achieve: reduction of time by a factor n/2in exchange for log *n* words of memory (each *n* bits long)

Standard TMTO Attack

Precomputation

• Compute E(x, 0) for each

 $x = x_1 \cdots x_m 0000000 \cdots 00$

Store these $2^m = n$ words in memory

Online Phase

• Compute
$$E(k \oplus v, 0)$$
 for each

$$v = 00 \cdots 0 v_{m+1} v_{m+2} \cdots v_n$$

- Check for match in memory
- If match: $k = v \oplus x$

Standard TMTO Attack

Standard TMTO Attack

• **Cost:**
$$2^{n-m} = \frac{1}{n}2^n$$
 function evaluations

 \Rightarrow What did we achieve: reduction of time by a factor *n* in exchange for *n* words of memory (of *n* bits each)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Tweaked TMTO Attack

Tweaked TMTO Attack

Precomputation

• Compute E(x, 0) for each

 $x = x_1 \cdots x_m 0000000 \cdots 00$

Store the *m* first bits of these $2^m = n$ words in memory

Online Phase

Compute $E(k \oplus v, 0)$ for each

 $v = 00 \cdots 0 v_{m+1} v_{m+2} \cdots v_n$

- Check for match in memory (in *m* first bits)
- If match (very likely): recompute E(x, p)
- If match remains: $k = v \oplus x$

Tweaked TMTO Attack

Tweaked TMTO Attack

• **Cost:**
$$2 \cdot 2^{n-m} = \frac{2}{n} 2^n$$
 function evaluations

 \Rightarrow What did we achieve: reduction of time by a factor n/2in exchange for *n* words of memory (of log *n* bits each)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

-Tweaked TMTO Attack

Summary

	cube attack	plain TO	tweaked TO
Function evaluations	$\frac{2}{n}2^{n}$	$\frac{1}{n}2^n$	$\frac{2}{n}2^n$
Memory (<i>n</i> -bit words)	log n	п	log n
Precomputation	2 ⁿ	п	п
Memory accesses	1	$\frac{1}{n}2^n$	$\frac{1}{n}2^n$

(ロ)、(型)、(E)、(E)、 E、 の(の)